Derivatives of Inverse Differentiable Functions:

Theorem: The Derivative Rule for Inverses

If f has an interval I as domain and $f^{\prime}(x)$ exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $\frac{d f^{-1}}{d x}$ at a point b in the domain of f^{-1} is the reciprocal of the value of f^{\prime} at the point $a=f^{-1}(b)$:

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=b=f(a)}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=a} \ldots(1)}
$$

The slopes are reciprocal: $\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}$ or $\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)}$
Example 6: Verify Eq.(1) for $f(x)=x^{2}, x \geq 0$ and its inverse $f^{-1}(x)=\sqrt{x}$ at the point $x=2$ in the domain of f.

Sol.: at $x=2 \Rightarrow f(2)=2^{2}=4$

$$
\begin{aligned}
& \left.\frac{d f^{-1}}{d x}\right|_{x=f(a)}=\left.\frac{d}{d x} \sqrt{x}\right|_{x=4}=\left.\frac{1}{2 \sqrt{x}}\right|_{x=4}=\frac{1}{2 \sqrt{4}}=\frac{1}{2 * 2}=\frac{1}{4} \\
& \left.\frac{d f}{d x}\right|_{x=2}=\left.\frac{d}{d x} x^{2}\right|_{x=2}=\left.2 x\right|_{x=2}=2 * 2=4
\end{aligned}
$$

Thus $\left.\frac{d f^{-1}}{d x}\right|_{x=f(2)}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=2}}$

Example 7: Let $f(x)=x^{3}-2$. Find the value of $\frac{d f^{-1}}{d x}$ at $x=6=f(2)$ without finding a formula for $f^{-1}(x)$.

Sol.: $\left.\quad \frac{d f}{d x}\right|_{x=2}=\left.\frac{d}{d x}\left(x^{3}-2\right)\right|_{x=2}=\left.3 x^{2}\right|_{x=2}=3(2)^{2}=3 * 4=12$
Thus $\left.\frac{d f^{-1}}{d x}\right|_{x=f(2)=6}=\left.\frac{1}{\frac{d f}{d x}}\right|_{x=2}=\frac{1}{12}$.

Homework

1. Find a formula for the inverse of the function and show that $f\left(f^{1}(x)\right)=f^{1}(f(x))$.
a. $y=\sqrt{10-3 x}$
b. $y=\frac{4 x-1}{2 x+3}$
c. $y=2 x^{3}+3$
d. $y=1-\frac{2}{x^{2}} ; x>0$
e. $y=\sqrt{x^{2}+2 x} ; x>0$
f. $y=\frac{1}{x^{3}} ; x \neq 0$
g. $y=(x+1)^{2} ; x \geq 1$
h. $y=x^{2 / 3} ; x \geq 0$
i. $y=(1 / 2) x-7 / 2$
2. Find a formula for the inverse of the function and verify that $\left.\frac{d f^{-1}}{d x}\right|_{x=f(a)}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=a}}$ by evaluating $d f / d x$ at $x=a$ and $d f^{-1} / d x$ at $x=f(a)$.
a. $f(x)=2 x+3, a=-1$
b. $f(x)=5-4 x, a=1 / 2$
c. $f(x)=(1 / 5) x+7, a=-1$
d. $f(x)=2 x^{2}, x>0, a=5$
