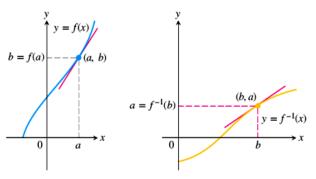
Derivatives of Inverse Differentiable Functions:

Theorem: The Derivative Rule for Inverses

If *f* has an interval *I* as domain and *f* '(*x*) exists and is never zero on *I*, then *f*⁻¹ is differentiable at every point in its domain. The value of $\frac{df^{-1}}{dx}$ at a point *b* in the domain of *f*⁻¹ is the reciprocal of the value of *f* ` at the point *a*=*f*⁻¹(*b*):

$$\left.\frac{df^{-1}}{dx}\right|_{x=b=f(a)} = \frac{1}{\left.\frac{df}{dx}\right|_{x=a}}\dots(1)$$



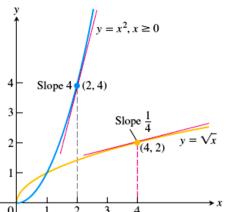
The slopes are reciprocal: $(f^{-1})'(b) = \frac{1}{f'(a)}$ or $(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$

Example 6: Verify Eq.(1) for $f(x) = x^2$, $x \ge 0$ and its

inverse $f^{-1}(x) = \sqrt{x}$ at the point x = 2 in the domain of f. Sol.: at $x = 2 \implies f(2) = 2^2 = 4$

$$\frac{df^{-1}}{dx}\Big|_{x=f(a)} = \frac{d}{dx}\sqrt{x}\Big|_{x=4} = \frac{1}{2\sqrt{x}}\Big|_{x=4} = \frac{1}{2\sqrt{4}} = \frac{1}{2*2} = \frac{1}{4}$$

$$\frac{df}{dx}\Big|_{x=2} = \frac{d}{dx} x^2 \Big|_{x=2} = 2x \Big|_{x=2} = 2 * 2 = 4$$



<u>syllabus</u>

Thus
$$\left. \frac{df^{-1}}{dx} \right|_{x=f(2)} = \frac{1}{\left. \frac{df}{dx} \right|_{x=2}}$$

Example 7: Let $f(x) = x^3 - 2$. Find the value of $\frac{df^{-1}}{dx}$ at x = 6 = f(2) without finding a

formula for $f^{-1}(x)$.

Sol.:
$$\frac{df}{dx}\Big|_{x=2} = \frac{d}{dx}(x^3 - 2)\Big|_{x=2} = 3x^2\Big|_{x=2} = 3(2)^2 = 3*4 = 12$$

Thus $\frac{df^{-1}}{dx}\Big|_{x=f(2)=6} = \frac{1}{\frac{df}{dx}\Big|_{x=2}} = \frac{1}{12}$.
Homowork

Homework

1. Find a formula for the inverse of the function and show that $f(f^{1}(x))=f^{1}(f(x))$.

a.
$$y = \sqrt{10-3x}$$

b. $y = \frac{4x-1}{2x+3}$
c. $y = 2x^3+3$
d. $y = 1-\frac{2}{x^2}; x > 0$
e. $y = \sqrt{x^2+2x}; x > 0$
f. $y = \frac{1}{x^3}; x \neq 0$
g. $y = (x+1)^2; x \ge 1$
h. $y = x^{2/3}; x \ge 0$
i. $y = (1/2)x - 7/2$

2. Find a formula for the inverse of the function and verify that $\left. \frac{df^{-1}}{dx} \right|_{x=f(a)} = \frac{1}{\left. \frac{df}{dx} \right|_{x=a}}$

by evaluating df/dx at x=a and df^{-1}/dx at x=f(a).

a. f(x) = 2x + 3, a = -1b. f(x) = 5-4x, a = 1/2c. f(x) = (1/5)x + 7, a = -1d. $f(x) = 2x^2, x > 0, a = 5$

Mathematics

<u>syllabus</u>